Lyell, Analogy and the Distancing of Geology from Cosmology

While for contemporary readers the reason may not be so readily apparent, in Charles Lyell’s Principles of Geology he needed to insist that geology was something other than cosmogony as the very precondition for his attempts to persuade his readers of the three main premises of his work, namely: Actualism, the view that the same kind of causes have been at work at all times in history, Uniformitarianism, that they have also been operating at the same intensity and the existence of a closed, self-sustaining, system in which these forces act.

Having previously stated that “[g]eology is intimately related to almost all the physical science, as is history to the moral”, he then proceeds to distance it from other modes of knowing for “just as the limits of history, poetry and mythology were ill-defined in the infancy of civilization” so too were the limits of geology in his own time. This is of some note, for where Lyell sets his boundaries will greatly affect his ability to present his point.

Take, for instance, his statement that when we inquire “into the state of the earth and its inhabitance at former periods, we acquire a more perfect knowledge of its present condition” which demonstrates both his Actualism and his Uniformitarianism. If the concept of cosmogony were permitted to encroach on geology then this statement would have been made much more problematic for him, for any inquiry into the beginning of things generally either posits a definitive beginning (in which there was some fundamental change in the structure of causality) or else accept that the universe was cyclical (which he goes to great length to disprove in the second and third chapter of this work, attributing this position in part to an early misunderstanding by pagan religions of the presence of fossilized animals). True, there are many other potential conditions, and the concept of a purely infinite cosmos which is not cyclical, is not addressed, however these were the two alternatives that he wished to specifically avoid in his geological researches.

It is telling to note how closely his explanation for the primitive belief in a cyclical cosmos reflects his opposition to the Neptunist doctrine of catastrophic floods. He uses both pagan and Christian examples to point out the psychological origins of catastrophic thinking, which resonates with his previous analogy of the relationship between geology and history. He states that “[t]he connexion [sic] between the doctrine of successive catastrophes and repeated deteriorations in the moral character of the human race, is more intimate and natural than might at first be imagined”, making reference to the Chilean earthquake of 1822, and those Catholics who attributed it to God’s displeasure. Through this comparison, he argues the existence of Pagan and Catholic misunderstandings of nature as being the basis for his Neptunist opponents’ position.

Lyell’s dependency on analogies, the same analogies which allow him to distance himself from his detractors, also rests on the separation of cosmogony from the true object of his study, as can be seen in his discussion of the relationship between history and geology. Near the end of the first chapter he promises that he will “attempt in the sequel of this work to demonstrate that geology differs as widely from cosmogony, as speculations concerning the creation of man differ from history”. Both history, in the sense that Lyell means, as the history of civilization, and geology cease being recognizable disciplines when they are drawn back far enough into the past. Thus as prehistory is to the history of civilization, so too is cosmogony to geology; it is a paradigm shift whose transgression eclipses the purpose of its original study. For the purpose of Lyell’s project it does not matter how ancient the earth is, as long as we do not begin at the very beginning we can assume a certain consistency and therefore draw conclusions (which indeed, may not be possible in any other fashion). This is particularly evident in his comments on human history, in which he states that we can:

“trace the long series of events which have gradually led to the actual posture of affairs; and by connecting effects with their causes, we are enabled to classify and retain in the memory a multitude of complicated relations […], which, without historical associations, would be uninteresting or imperfectly understood.”

Without the ability to trace these “historical associations” through a consistent, though finite, chain of cause and effect his argument is made lame by its lack of causal and historical certainty, yet this uncertainty is exactly what cosmogony would throw into Lyell’s geography if he were to accept it as part of his study. How could the ultimate origins of the earth be explained by geology without the possibility of a frightful regression into an endless chain of causality, or else without the need for a transcendent principle acting beyond the commonly understood order of cause and effect?

Thus Lyell’s need to amputate cosmogony from geology demonstrates a persistent paradox in the nature of the historical sciences. This is particularly so in the case of geology which depends on an understanding of secondary causes (or an indirect approach to causality) to demonstrate its validity: In order for the science to explain things with some universality, as Lyell insists is necessary, it must limit itself to a finite subject whose very finitude makes the historical associations mentioned in the preceding quotation possible. Thus there is an interesting and potentially paradoxical concern that if we wish to be able to say anything universal it can not take as its object that which is actually universal, such as the beginning of things.

However, is it so important to “amputate” cosmogony in Lyell’s scheme, considering that the scientific and rhetorical basis of his arguments are so strong? Yet it must necessarily be of the greatest importance. It is striking that the chapters refuting geology’s difference from cosmogony were left out of the Weber anthology on this subject. They constitute Lyell’s efforts to sweep the slate clean of “the most common and serious source of confusion” in early geology. He does this in order to firmly root his hypothesis in what he sees as more empirical soil, but which has its own implications outside of this particular project.

To play the devil’s advocate, could it not be said that Lyell’s need for a closed, self-sustaining system would necessarily benefit from admitting cosmogony into the scheme of geology? If he were only trying to demonstrate the self-sufficiency of the closed system this would have been the case; however, here we again come up against the demands of Actualism and the Uniformitarianism placed by Lyell on his geology.

Ultimately then, in order for Lyell’s project to succeed he needed to separate the definite science of geology from the indefinite results of cosmogony. Whereas the one would leave him no starting point from which to draw his other conclusions, the other allowed him a freedom to demonstrate the consistency of causes on this earth, without having to resort to explanations beyond or behind its origins. It is in its way another example of the trend in the nineteenth century towards increased specialization, in which disciplines were further subdivide in order than anything might be known with certainty about the particulars of nature. The problem after Lyell would then not be a matter of separation, but one of consolidation.

For More Information:

Lyell, Charles. Principles of Geology. London: John Murray, 1830.

(Accessed online at ESP: Electronic Scholarly Publishing: http://www.esp.org/books/lyell/principles/facsimile/)

http://en.wikipedia.org/wiki/Principles_of_Geology

Weber, A.S. Ed. 19th Century Science: An Anthology. Canada: Broadview Press Ltd, 2000.

Life from the Unliving

“I shall never forget the sight. The vessel of crystallization was three-quarters full of slightly muddy water — that is, dilute water-glass — and from the sandy bottom there strove upwards a grotesque little landscape of variously coloured growths: a confused vegetation of blue, green, and brown shoots which reminded one of algae, mushrooms, attached polyps, also moss, then mussels, fruit pods, little trees or twigs from trees, here and there of limbs. It was the most remarkable sight I ever saw, and remarkable not so much for its appearance, strange and amazing though that was, as on account of its profoundly melancholy nature. For when Father Leverkühn asked us what we thought of it and we timidly answered him that they might be plants: ‘No’, he replied, ‘they are not, they only act that way. But do not think the less of them. Precisely because they do, because they try to as hard as they can, they are worthy of all respect’. It turned out that these growths were entirely unorganic in their origin; they existed by virtue of chemicals from the apothecary’s shop, the ‘Blessed Messengers’. Before pouring the waterglass, Jonathan had sprinkled the sand at the bottom with various crystals; if I mistake not potassium chromate and sulphate of copper. From this sowing, as the result of a physical process called ‘Osmotic pressure’, there sprang the pathetic crop for which their producer at once and urgently claimed our sympathy. He showed us that these pathetic imitations of life were light-seeking, heliotropic, as science calls it. He exposed the aquarium to the sunlight, shading three sides against it, and behold, toward that one pane through which the light fell, thither straightway slanted the whole equivocal kith and kin: mushrooms, phallic polyp-stalks, little trees, algae, half-formed limbs. Indeed, they so yearned after warmth and joy that they clung to the pane and stuck fast there. ‘And even so they are dead’, said Jonathan, and tears came in his eyes, while Adrian, as of course I saw, was shaken with suppressed laughter. For my part, I must leave it to the reader’s judgment whether that sort of thing is matter for laughter or tears.”

This passage, in Doctor Faustus: The Life of the German Composer Adrian Leverkühn, as Told by a Friend, by the novelist Thomas Mann (1875-1955) features the work of the French biologist Stéphane Leduc (1853–1939), who attempted to show, with his artificial life, the chemical basis of development and growth through the processes of osmosis and diffusion. In her book Making Sense of Life the philosopher of science, Evelyn Fox Keller (1936-present) dedicates a considerable portion of her first chapter to a study of Leduc’s synthetic biology in an exploration of what it means to understand organisms, as opposed to other aspects of nature.

Unlike physicists, Keller observes, biologists do not look for a “theory of everything”, strictly speaking, for:

“Just as the diversity of life, rather than its unity, has historically commanded the respect of life scientists, so too, [she proposes], the epistemological diversity of their aspirations demands our respect as historians and philosophers of science.”

This epistemic shift places a much greater emphasis on the role of description in explanation, leading Keller to conclude that:

“A description of a phenomenon counts as an explanation, I argue, if an only if it meets the needs of an individual or community. The challenge, therefore, is to understand the needs that different kinds of explanations meet.”

Since needs vary by time and place, so too do the explanatory terms that are seen to address them. “Theory”, “knowledge”, “understanding” are such fluid, historically contradictory terms, and their fluidity emerges, in part because:

“As evolutionary beings, there is some extent to which it can not make sense in its entirety.”

These observations place a much greater emphasis on analogical, metaphorical thinking, even while undermining traditional claims to the kinds of understanding they can potentially lead us to. In my previous post on the role of analogical reasoning in Anton van Leeuwenhoek’s study of microorganisms, I pointed out some of the ways in which it helped Leeuwenhoek come to terms with, and develop a working knowledge of, his microscopic observations, while at the same time, by contemporary standards, led him to draw erroneous, though understandable conclusions about the life processes of the creatures he was studying. Synthetic life, based, as it is, on an emphasis on the continuity between the organic and inorganic worlds, is another area that lends itself well to these kinds of considerations.

Whether seen in reductionistic or vitalistic terms, crystallization in particular, and the formation of minerals in the earth in general has a very ancient connection with living matter in western thought. Ancient and medieval alchemy was premised, in part, on the thought that metals gestated in the earth, and had a kind life, could be killed, and reborn in the alchemical furnace.

Sir Isaac Newton (1642-1727) and other early modern alchemists were particularly taken by “the vegetation of metals”, chemical phenomena such as the “Tree of Diana”, Arbor Diana, a dendritic amalgam of crystallized silver, created from mercury in a solution of silver nitrate.

Johann Christian Reil (1759–1813), who coined the term psychiatry in 1808, used crystallization as a powerful metaphor in his attempts to show how knowable forces could be responsible for the existence of life, while later naturphilosophen would use it to demonstrate the vitality of all of existence, the symmetries between the human and the natural worlds, and thereby the efficacy of using analogy, metaphor and introspection in their attempts to understand it.

In 1836, Andrew Cross (1784-1855) a British electrical experimentalist claimed to have produced insects through a process of electrocrystalization and presented his findings in Bristol at a meeting of the British Association for the Advancement of Science. While not the inspiration for Mary Shelly’s Frankenstein as is commonly believed, (Frankenstein was written in 1818) it did serve as evidence for the self-organization of life in Robert Chambers’ best selling and controversial work, Vestiges of the Natural History of Creation, published in 1844. The self-organization of nature, whether found in evolutionary or nebular theories, was considered a particularly dangerous concept in England during the 1830s and 40s because of its political connotations for the self-organization of society, instead of a top down model in which a supreme ruler, i.e. God, governed absolutely. Because of the potentially damning political consequences, Chambers chose to remain anonymous for his entire life, but his work is now credited with making evolutionary theories acceptable to the British middle class, creating an environment in which Darwin, having agonized over whether or not to publish his view for almost twenty years, could present them with far less chance of legal action being taken against him.

In an interesting way appeals to analogical or metaphorical reasoning, with all of it’s promises and pitfalls, does seem to consistently undermine established political and epistemic structures, and in some ways is to explanation what the Protestant Reformation was to Christianity, a leveling of authority as each observer is given a new sense of confidence in the validity of their own observations, no matter how seemingly aberrant.

And as for the consequences this has for the creation of living or, semi-living things? Strange, one can only hope.

For More Information:

http://en.wikipedia.org/wiki/Thomas_Mann

http://en.wikipedia.org/wiki/Stephane_Leduc

http://en.wikipedia.org/wiki/Evelyn_fox_keller

http://en.wikipedia.org/wiki/Andrew_Crosse

http://en.wikipedia.org/wiki/Diana%27s_Tree

http://en.wikipedia.org/wiki/Johann_Christian_Reil

http://en.wikipedia.org/wiki/Naturphilosophie

http://en.wikipedia.org/wiki/Sir_Isaac_Newton

http://en.wikipedia.org/wiki/Vestiges_of_the_Natural_History_of_Creation

http://www.councilforresponsiblegenetics.org/genewatch/GeneWatchPage.aspx?pageId=236&archive=yes

http://www.lumen.nu/rekveld/wp/?p=604

Keller, Evelyn Fox. 2002. Making Sense of Life: Explaining Biological Development with Models, Metaphors and Machines. Cambridge: Harvard University.

Mann, Thomas. 1948. Doctor Faustus: The Life of the German Composer Adrian Leverkühn, as Told by a Friend. New York: A.A. Knopf.

http://www.newscientist.com/article/dn20906-lifelike-cells-are-made-of-metal.html

strand beast: http://www.strandbeest.com/

Kick Starter, Brit Cruise and Connections, Old and New

In 1978 the British series Connections presented a non-linear, non-teleological view of technological change and development. The series starred the historian of science James Burke. A dynamic speaker, and witty in that particularly British short of way, Burke led audiences from touch stones to atomic bombs, from stirrups to telecommunications, and from monasteries to modern assembly lines. As he did so, he showed the extreme contingency, and indirect paths taken by innovation and discovery in which more often than not greed, religion, accident or warfare led to the development of ideas and devices capable of being used in radically different ways than could have been expected from their originally intended use. The series was so popular that it spawned another run in 1994 and 1998. It was also an early and popular venue for Burke to explore the ideas of Thomas Kuhn and other theorists of technoscientific change, something that I’ve not seen a great deal of in the past decade.

I was thus greatly enthused to learn that Brit Cruise, a filmmaker from British Columbia, was attempting to find backing and support for a new series of shows dedicated to applying “the template behind the TV show Connections to concepts instead of inventions”, exploring:

the roots of great conceptual ideas by following the history of problems from which they arose. Each episode will follow one ancient problem and explore how it reoccurs again and again in more modern forms. This allows us to follow conceptual ideas along the context of their inception – making it easier to digest challenging theoretical ideas.

The great thing about Kick Starter as a form of microfinance is that it allows almost anyone to help fund and support ideas that they believe in, and connects the widest possible array of dreamers and schemers with people who could help them get their projects off the ground. While documenting each stage of the production for his supporters, Brit also provides valuable insights into his working methods and helps to show how others could see their own ideas reach full fruition through the various new sources of funding and development opening up to independent creative talent around the world. I look forward to being able to continue watching his progress as he continues to develop the series.

For More Information:

Brit Cruise’s Kick Starter page: http://www.kickstarter.com/projects/artoftheproblem/gambling-with-secrets

Blog: http://britcruise.wordpress.com/

And “The Making of” Blog: http://artoftheproblem.net/behind-the-scenes/

http://topdocumentaryfilms.com/james-burke-connections/

http://en.wikipedia.org/wiki/Connections_%28TV_series%29

http://en.wikipedia.org/wiki/James_Burke_%28science_historian%29

http://www.kickstarter.com/

God of Hutton, God of Kelvin: Religion, Eternity and the Age of the Earth

The debate between William Thomson, who would later be ennobled as Lord Kelvin (1824 –1907) and the followers of James Hutton (1726–1797) demonstrates a difficult period in the history of nineteenth century science in which the figures who are traditionally regarded as the fathers of modern geology (Hutton) and biology (Darwin) where pitted against Lord Kelvin, who is still considered one of the founding fathers of thermodynamics, and thus of modern physics. The point which brought these figures into conflict was the argument surrounding the age of the earth. Hutton’s and Kelvin’s methodologies were in some ways very similar, particularly in their views on the uniformity of nature and the demand for evidence of a beneficent being who created the natural world. Furthermore, both were forced to appeal to secondary causes when trying to defend their positions. Where they differed substantially was in their understanding of eternity in the larger framework of how the creator expressed himself in the world and how this related to the human ability to understand it.

It would be too easy to phrase the debate between Kelvin and the geologists as a conflict between empirical evidence and religious prejudices in nineteenth century science. Indeed, Kelvin himself gave ample evidence that he worried about the theological implications of the geological and evolutionary theories of his time. In an 1872 speech to the British Association for the Advancement of Science, Kelvin concluded his discussion with a reaffirmation of these worries in the “zoological speculations” of contemporary biologists, stating that: “Overpoweringly strong proofs of intelligent and benevolent design lie around us […] showing to us through nature the influence of a free will, and teaching us that all living things depend on one everlasting Creator and Ruler”. Presumably, Kelvin felt that the vast time scales proposed by Hutton, Lyell and Darwin would remove the need for a creator in the universe and infringe on the free will of humans.

Yet in this assumption we are all too quick to ignore the unorthodox religious views which led Hutton to formulate his self perpetuating “world machine”. As laid down by one of his more eloquent proponents, John Playfair (1748–1819), this perpetuity is ultimately maintained by God, for the author of nature: “has not given laws to the universe, which, like the institutions of men, carry in themselves the elements of their own destruction. He has not permitted in His works any symptoms of infancy, or of old age, or any sign by which we may estimate either their future or their past duration”. The world had obviously been created for the benefit of the things living upon it and for human beings in particular, and it would not have been fitting for a wise and omnipotent being to create it as anything other than eternal. As is clear from Playfair’s statement, it was this very indefiniteness which was the sign of divinity. While the system itself was indefinite, as a product of God’s wisdom, once started the world machine would perpetuate the specific cycles of uplift and erosion unendingly, maintaining the various balances which were necessary for life.

In the case of Kelvin, the situation is aptly summarized by Burchfield in his work Lord Kelvin and the Age of the Earth, for “it was the belief in design that justified the formulation of universal scientific laws, that assured the relationship of cause and effect, that, in short, made science possible”. Considering Hutton’s religious views, it seems very unlikely that he would disagree with this statement. The science of both men was deeply integrated with their theological conceptions of how a wise and omnipotent God would construct an orderly world.

Likewise, Kelvin and Hutton’s intellectual defender, Charles Lyell (1797-1875) largely agreed on the actualism of causation, in which the same kind of causes have been at work at all times, and held similar views of uniformitarianism, in which the same causes have been acting with the same intensity over time. As Lyell formulated it, through: “researches into the state of the earth and its inhabitants at former periods, we acquire a more perfect knowledge of its present condition, and more comprehensive views concerning the laws now governing its animate and inanimate production”. This was also the case for Kelvin, for whom logical consistency “required that since the discovery of the primitive state of matter is beyond man’s power, if one is to find a probable beginning, he must start with the present condition of nature and reason back by analogy and strict dynamics”.

The situation is somewhat less definite in regards to the two men’s approaches to uniformitarianism. As it was generally argued, Kelvin was clearly antagonistic to the idea as he understood it. However, in his work On Geological Dynamics, Kelvin specifies that he is opposed to what he called “ultra-uniformitarianism”, and otherwise speaks approvingly of other similar movements in geology: “The geology which I learned thirty years ago [embodied the fundamental theory of] Evolutionism. This I have always considered to be the substantial and irrefragable part of geological speculation; and I have looked on the ultra-uniformitarianism of the last twenty years as a temporary aberration worthy of being energetically protested against”. When seen in this light, Kelvin’s affinity for certain forms of uniformitarianism becomes more evident and shows the difficulties in strictly drawing a line between the methods employed by  proponents of the young earth and those of the old.

This subtlety is clearly shown when one considers Kelvin’s argument presented by On the Secular Cooling of the Earth, in which he states “that essential principles of Thermo-dynamics have been overlooked by those geologists who uncompromisingly oppose all paroxysmal hypostheses”. Immediately following this Kelvin makes it clear that he is not a catastrophist in the traditional sense of the word. For him: “It is quite certain the solar system cannot have gone on even as at present […], without the irrevocable loss (by dissipation, not by annihilation) of a very considerable proportion of the entire energy initially in store for sun heat”. The distinction between annihilation and dissipation is a crucial one. Not only is it a reaffirmation of the first law of thermodynamics, but it also opens the door to a different kind of unimformitarianism than that typically attributed to Lyell or Hutton. It is one in which there can be a uniformity of causes without a corresponding uniformity of effects. The causes themselves have been acting at the same intensity; however, their effects have varied over time because of the limitation placed on them by the second law of thermodynamics. The laws are the same, the causes are the same, yet as Kelvin says: “the secular rate of dissipation has been in some direct proportion to the total amount of energy in store, at any time after the commencement of the present order of things, and has been therefore very slowly diminishing from age to age”. The rate of the dissipation would vary in proportion to the total amount of energy in store, producing effects of varying intensities despite the uniformity of the causes governing them.

This crucial distinction is what allowed Kelvin to criticize Playfair’s statement that only a direct act of God could bring about a catastrophe like the one implied by Kelvin’s thermodynamic approach to the age of the earth. Playfair concludes the passage by stating: “we may safely conclude that this great catastrophe will not be brought about by any of the laws now existing, and that it is not indicated by anything which we perceive”. Kelvin, however, found a grave error in this view of uniformity. Indeed, he saw it as being: “pervaded by a confusion between ‘present order,’ or ‘present system,’ and ‘laws now existing’—between destruction of the earth as a place habitable to beings such as now live on it, and a decline or failure of law and order in the universe”. Thus it is evident that he did not contest the validity of uniformity itself. Kelvin contested what he saw as a narrow view of uniformity that could not derive universal laws from the present order of things within the finite framework of the solar system, but instead was forced to posit an indefinite standpoint in order to make its system scientifically valid.

Thus, when looking at Lyell’s three main tenants of actualism, uniformitarianism and cyclicality, it is only the underlying principle of cyclicality which differs substantially from Kelvin’s own thought. What, then, can be said about the fundamental differences that divided Kelvin’s thought from that of the geological community of his time? These differences can not appeal to the specious distinction between science and religion in either camp, since their religiosity was almost identical in its demands for an ordered, benevolent deity which made science possible. Rather, the question was what that beneficent order would look like. Likewise, one can not make appeals to the demand both groups placed upon their thinking in regards to the stability of causality which made scientific inquiry into the past possible. Where they did differ was in the objects of study which each group took up to defend its claims, and how these objects could in some ways only be viewed indirectly. It was the indirectness of secondary causes which left both groups open to criticism from the opposing camp and perpetuated the debate for almost forty years in Kelvin’s lifetime alone. At the heart of the matter, however, were the conflicting views of eternity which formed the basis of both Hutton’s, as mediated through Lyell, and Kelvin’s visceral opposition to the other’s work, about the circularity or progressiveness of nature.

It would be helpful here to provide some explanation of what is meant by secondary causes. Secondary causes in this case would be any cause which must be appealed to in order to get to a more primary cause which can not be directly observed. Since it is not possible for people to actually see the effects of time in geology over thousands or millions of years, it is then necessary when explaining its effects to point instead to the effects of things such as the dissipation of heat, uplift, layering, and erosion. Once these explanations are found it is then possible to work backwards from the causes of these effects to the prime cause, whether that be the formation and age of the earth itself or the formation and age of a specific mountain range.

Hutton, in exploring the age of the earth, took as his object of study the layers of the earth itself. As first this consideration seems to go without saying, yet it is important to note that this was not the case with Kelvin, who instead dealt almost exclusively with the nature of heat, and the ability of the earth to support living things. Both of them were looking at secondary causes to demonstrate their positions, one in the effects of unimaginable time on the earth itself and the other at the age of the suns heat. The nature of their particular observations made both arguments vulnerable to their own particular criticisms.

The discovery of unconformity in geological strata demonstrated to Hutton a key mechanism in the circularity of geological processes. Unconformities are the remains of geological strata which have been displaced from their horizontal alignment and instead now occupy a vertical position relative to the above strata (see appendix 1). The conclusions which were drawn from this phenomenon were most artfully stated, once again, by Playfair: “We often said to ourselves, What [sic] clearer evidence could we have had of the different formation of these rocks, and of the long interval which separated their formation, […] Revolutions still more remote appeared in the distance of this extraordinary perspective”. Unconformities had the effect of breaking down older geological strata, in some ways erasing the records of past time. Their existence was a vital part of Hutton’s argument for a cyclical earth, and represented his most direct evidence that the age of the earth was not something limited by either past or future ages.

This kind of “direct” indirect evidence demonstrates the problem facing any purely geological inquiry into the age of the earth. Hutton and his followers, when considering the single system of the earth, could only consider what incidental evidence was left over for them after years of intervening phenomenon had had a chance to bury and destroy the very evidence they were looking for. This naturally left them with an indeterminate number of cycles continuing without apparent end. True, they were shown an example of the vast time scale on which geology operated, opening up the door to a more complete depiction of the age of the earth; however, they were unable to derive any further evidence for these same cycles except to point, rock hammer in hand, at the immense times required to lay the cycles down in the geological strata. Outside of this they could only appeal to base principles of what was required for life and a beneficent deity. The instability of these secondary causes would continually leave the early Uniformitarians open to accusations that they had not sufficiently grasped the physical and mathematical laws governing their field of study, while their very same field of study seemed to deny any attempt at strict quantification because of the same order that made it observable in the first place.

The problem Kelvin faced was somewhat different, though directly related to the difficulties of secondary causes in quantifying geological time. Taking as his object of study the dissipation of heat, and armed with the mathematical tools of thermodynamics, Kelvin would at first glance appear to have a better standing when it came to quantifying the age of the earth. Yet here too Kelvin was confronted by the same bugbear of secondary causes as were his intellectual opponents. Kelvin hoped to use the second law of thermodynamics to help guide his calculations into the age of the earth. The second law of thermodynamics lays down that energy is always moving from a more ordered to a less ordered state, the most disordered form of energy being heat. For example, a cup of tea in a cold room will never become warmer while the room cools, but will continue to loose heat to its environment in a predictable manner until both the room and the tea reach a state of thermal equilibrium. It was this predictable rate of dissipation which Kelvin hoped to use as his indicator in much the same way as radioactive decay is used today to determine the age of objects.

Kelvin used mathematical principles guided by the second law of thermodynamics in part because he could not look to the earth itself when in need of placing a definitive limit on its age. Here the quantitative factors were still too murky, and in some cases were directly hostile to his position. Rather, in using the definitive measure of heat, and taking as his object the age of the sun, he could hope to be able to fix the age of the earth by binding it with that of the sun which could not be studied qualitatively, but only quantitatively. This appears to have been his intent. In a thirty-one year span Kelvin worked out his calculations drawing the age of the earth ever closer to the common estimate of the age of the sun, so that the age of the earth went from being twenty and four hundred million years, compared to the sun’s twenty million years, to a number set at twenty-four million years.

Fundamentally, however, the precision of his calculations in placing limits on the age of the earth was secondary to his main goal of firmly establishing that such limits actually existed. As Burchfield says “The inexactness of his calculations was […] unimportant so long as they established the necessity for a limit upon geological time and the impossibility of uniformitarianism’s demand for limitless ages”. Still, since Kelvin took as his object the sun, which could only be known quantitatively through astronomical means, he was nevertheless open to chargers of miscalculation, and to criticisms of the roundabout way in which he sought to fix the age of the earth.

Given the difficulty inherent in any definitive resolution to the problem of the age of the earth, then, we must look even further into the primary goals Kelvin and Hutton hoped to achieve in their world systems. In doing so we see that the matter was largely a reflection of the different ways in which the two men viewed the nature and dangers of the concept of eternity for human kind, and for the very possibility of reason in natural philosophy.

Hutton’s cyclical conception of the world took as its model Newton’s cosmos, infinite in space, whose motions where perfectly balanced in the orbits of the planets. Yet where Newton’s cosmos was infinite in space, Hutton’s world would focus on the infinity of time. The balancing of forces which maintained the planetary orbits was analogous to the balancing forces of erosion and uplift which maintained the succession of worlds. Yet the movement from an infinite cosmos to an eternal world is not without its difficulties. Hutton’s world machine made a radical statement about the nature of history, and implied a more enclosed system than the Newtonian cosmos. Still, Hutton often drew the comparison between the cycles of the planets and the cycles of the earth.

This is exactly how he prefaces his famous concluding lines to the Theory of the Earth. After having just recounted the three periods of the earth and reaffirming the indefiniteness of their duration, he then goes on to draw the connection between the cyclical age of the earth and that of the planets, stating:

[W]e have the satisfaction to find, that in nature there is wisdom, system, and consistency. For having, in the natural history of this earth, seen a succession of worlds, we may from this conclude that there is a system in nature; in like manner as, from seeing revolutions of the planets, it is concluded, that there is a system by which they are intended to continue those revolutions. […] The result, therefore, of our present enquiry is, that we find no vestige of a beginning,–no prospect of an end.

For Hutton, as is evident from this excerpt, it is the eternally cyclic essence of natural phenomenon which makes it possible to logically observe systems in the world, which to a large extent makes them knowable. Without these cycles the most we could observe would be incidental phenomenon, insufficient for the development of universal principles. This demand upon knowledge has a surprising consequence. Natural phenomena are understandable insofar as they are cyclic in nature. This can be seen in the progression of animals, plants, climate and geology. However, human history, insofar as it focuses on particulars is unimportant, and potentially can not really be seen to exist at all.

Kelvin himself, however, was not entirely opposed to some forms of eternity. As is evident from his On the Age of the Sun’s Heat:

The result would inevitably be a state of universal rest and death, if the universe were finite and left to obey existing laws. But it is impossible to conceive a limit to the extent of matter in the universe; and therefore science points rather to an endless progress, through an endless space, of action involving the transformation of potential energy into palpable motion and thence into heat, than to a single finite mechanism, running down like a clock, and stopping for ever.

While this passage is almost universally held to mark the introduction of the idea of heat death, it also serves as a refutation of the very same possibility. Rather than asserting that the dissipation of heat will lead to an eventual extinguishing of all life, Kelvin instead posits a universe in which the second law of thermodynamics insures a continued activity of matter, directed and given order by the transformation of potential energy into motion and heat. Thus Kelvin was driven to establish a firm limit on the beginning of the earth in order to make his view of progression make sense in light of the fact that time in the universe had a direction, but no observable ending. While the earth itself may be limited and thus doomed to dissipation, the universe itself faced no such restriction.

This meant that the very thermodynamics which made the universe run was threatened by the Huttonian world machine, for if the earth was composed of eternal cycles, thermodynamics was in error, and, perhaps more unforgivably, the whole notion of progression in time. Furthermore, as has already been seen in Kelvin’s critique of “zoological speculations” in his 1872 speech, he was deeply worried about the effect geological and biological studies would have on the free will of humans. It was the indefiniteness of time which gave Hutton’s position the capacity to deny human history, which would rob individuals of their efficacy in the face of a world in which everything was repetition. Kelvin’s view of endless progression, however, would avoid this misevaluation of the will through its directionality. This directionality insured a firm ground for knowledge, insofar as universal laws could be derived from constant causes, but one whose effects could vary over time, a fact which, for Kelvin, also insured the purposefulness of human experience.

Ultimately, the similarities between Kelvin’s and Hutton’s approaches were striking considering the radically different conclusions which they drew from them. Both used almost identical assumptions about the uniformity of nature, with the exception of Hutton’s demand for circularity and Kelvin’s distinction that a uniform cause can produce a different effect given a different substrate. Likewise, both were led by strong religious convictions about the kind of order a beneficent god would establish in the world. What caused the contention in determining the age of the earth was the presuppositions they made about what that divine order would be like, whether it would be an eternal cycle or an eternal progression and what this would mean for both natural philosophy and the individual. In the age in which the problem was raised the conflict could not be satisfactorily resolved, and it was perpetuated by the ambiguous nature of secondary causes which both theories were forced to rely upon to prove their separate claims.

In the end what can really be learned from this debate is the vital capacity for similar methods and guiding principles to lead to dramatically different results given but a handful of separate core convictions. This tendency is only magnified in any system of knowledge which requires an indirect view of its subject matter. In such cases all positions must then suffer the capricious whims of the secondary causes upon which they, nevertheless, must rely.

For More Information:

http://en.wikipedia.org/wiki/Lord_Kelvin

http://en.wikipedia.org/wiki/James_Hutton

http://en.wikipedia.org/wiki/Charles_Lyell

http://en.wikipedia.org/wiki/John_Playfair

http://en.wikipedia.org/wiki/Uniformitarianism

http://en.wikipedia.org/wiki/Heat_death

Burchfield, Joe D.  Lord Kelvin and the Age of the Earth. London: The Macmillan Press LTD, 1975.

Gould, Stephen Jay. Time’s Arrow, Time’s Cycle: Myth and Metaphor in the Discovery of Geological Time. Massachusetts: Harvard University Press, 2001.

Hutton, James. Theory of the Earth with Proofs and Illustrations. Vol 1 and 2. Weinheim: H.R. Engelmann (J. Cramer) and Wheldon & Wesley, LTD., 1960.

Knell, Simon J. and Cherry L.E. Lewis. “Celebrating the Age of the Earth”. In The Age of the Earth: from 4004 BC to AD 2002. Eds C.L.E. Lewis and S. J. Knell. London: The Geological Society, 2001.

Lyell, Charles. “Principles of Geology” in 19th Century Science: An Anthology. Ed. A.S. Weber. Canada: Broadview Press Ltd, 2000.

Playfair, John. Illustrations of the Huttonian Theory of the Earth. London: Cadell and Davies, 1802.  In On Geological Time. In The Kelvin Library. Zapato Productions Intra­dimensional. Updated October 25th 2007. Accessed November 2nd 2007. <http://zapatopi.net/kelvin/papers/>

Thomson, W. (Lord Kelvin). “Popular Lectures and Addresses”, vol. 2. As in The Age of the Earth: from 4004 BC to AD 2002. Eds. C.L.E. Lewis and S. J. Knell. London: The Geological Society, 2001.

–––.  “On Geological Dynamics” in Transactions of the Geological Society of Glasgow, 1869. In The Kelvin Library. Zapato Productions Intra­dimensional. Updated October 25th 2007. Accessed November 2nd 2007. <http://zapatopi.net/kelvin/papers/>

–––.  “On the Age of the Sun’s Heat” in Popular Lectures and Addresses, vol. 1, 2nd edition. In The Kelvin Library. Zapato Productions Intra­dimensional. Updated October 25th 2007. Accessed November 2nd 2007. <http://zapatopi.net/kelvin/papers/>

–––. “On the Secular Cooling of the Earth”. in Transactions of the Royal Society of Edinburgh, Vol. XXIII, pp. 167-169, 1864. In The Kelvin Library. Zapato Productions Intra­dimensional. Updated October 25th 2007. Accessed November 2nd 2007. <http://zapatopi.net/kelvin/papers/>

–––. “On Geological Time”. in Popular Lectures and Addresses, Vol. ii, p. 10. 1868. In The Kelvin Library. Zapato Productions Intra­dimensional. Updated October 25th 2007. Accessed November 2nd 2007. <http://zapatopi.net/kelvin/papers/>

Microbial Life, The Myths of Science and the Legacy of Lovecraft

Having just finished Stefan Helmreich’s Alien Oceans: Anthropological Voyages in Microbial Seas, I was struck by a number of things, but, most fugitive, and therefore most interesting, was one parable he recorded, told to him by a postdoc at the Delong Lab at the Monterey Bay Aquarium Research Institute.

This postdoc, described as being interested in alternative epistemologies, spirituality, the writings of H.P. Lovecraft and the French Jesuit, paleontologist and philosopher Teilhard du Chardain, described the potential geological life cycle of methane producing microbes in a subsection entitled “Lovelock meets Lovecraft”:

“Once upon a time, when the earth was young, there was very little oxygen in the atmosphere. Instead, the atmosphere was mostly composed of methane and carbon dioxide and the oceans were warm and shallow. Life evolved to thrive under these greenhouse conditions. Methanogenic microbes feeding on carbon dioxide and other simple carbon compounds produced vast quantities of methane and this methane was in turn consumed by methane-oxidizing microbes found primarily beneath the ocean’s surface. In cooperation with sulfate-reducing organisms, the methane-oxidizing microbes built towering reef cities formed from mineralized carbonate and filled them over countless generations with their collective brood.

And affairs continued in this tranquil equilibrium for one and a half billion years, until the genesis of oxygenic-phototrophic metabolisms and the oxidation of the atmosphere. Life forms able to adapt to elevated oxygen levels thrived and radiated. Meanwhile, those content with living in anoxic places were pushed to marginal zones, to extreme environments– subterranean worlds and still waters, mud flats, and seafloor spreading centers. The great reef cities fell into ruin and were subsumed into submarine strata, a cryptic but lingering record of the lives of these ancient organisms. Despite this catastrophic reversal of fortune, these ancient ones held onto the edges of their once great empire and there they waited.

And here’s the moral of this conjectural tale: They knew, these ancient ones knew, to the very core of their genomic fiber, that it would all be okay, because through their DNA they had bequeathed the knowledge and the drive to return and rebuild. Because it turns out that all of the anthropogenic processes connected to climate change– fuel emissions, deforestation, cattle grazing– may well have the result of bringing back the ancient atmosphere. you see, these ancient organisms are patient. And here are the ironies– a good story always has ironies– they have no imperial ambitions, they have adapted to live and lurk in the marginal zones. But when the madness of humanity resurrected the ancient atmosphere they will be ready and willing to return, to rebuild their ancient dwellings beneath the sea and continue their eldritch cycling of methane. And the primordial balance will return. Until the next big catastrophe.”

The narrative helps to show the influence of Lovecraftian myths for contemporary scientists in the field, and how these myths play into the larger concerns of geological time, the “order” of nature, and critiques of anthropocentric thinking that were themselves part of the cultural milieu that Lovecraft himself was addressing at the beginning of the 20th century. Mythic thinking, is, after all, not reserved to traditional religions but plays itself out in any form of life that finds itself colliding with the uncertainties of acting in the world, even that of science. Indeed, Helmreich’s pairing of James Lovelock, one of the founding fathers of the “Gaia hypothesis”, with Lovecraft, whose myth cycle could be considered the cosmic counterpoint to it (emphasizing the extreme fragility of life and the incomprehensibility of the “inner workings” of existence) consciously plays off of the fundamental dichotomy of a secular mythology contrasting ecological “order” to “chaos”.

For More Information:

http://en.wikipedia.org/wiki/Pierre_Teilhard_de_Chardin

http://en.wikipedia.org/wiki/H._P._Lovecraft

http://en.wikipedia.org/wiki/James_Lovelock

http://en.wikipedia.org/wiki/Gaia_hypothesis

http://en.wikipedia.org/wiki/Methanogenic_bacteria

Have Brain, Will Travel

The epic of Albert Einstein’s brain is a macabre and yet captivating tribute to the cultural impact of “the father of modern physics”.

The story began in 1955, seven hours after Einstein’s death. The attending pathologist who was scheduled to perform the autopsy, Thomas Stoltz Harvey, looking over the body of the embodiment of genius in the 20th century, decided, it is said, that it would be a greater gift to posterity if he took the brain without the family’s permission. While he was at it, he also gave Einstein’s eyes to the physicists optometrist.

Certain that the brain would provide endless opportunities for scientists to look into the stuff of brilliance, Harvey eventually lost almost everything in his efforts to keep it in his possession: his job, his marriage, his house. Striped of these potentially stabilizing factors, he began traveling around America with the brain in the back of his car trying to find people who would appreciate his “gift to science”.

This fact was not widely known until 1978 when a journalist “broke” the story and interviewed the now aged pathologist.

Today a part of Einstein’s brain is in Ontario, most of it was returned to Princeton, but Harvey sent samples to over a dozen different specialists during the time when he was its keeper.

While we don’t often admit it to ourselves, the contemporary fetishization of knowledge has allowed the organ of the intellect to take on an uncanny quality, at once grotesque, and yet captivating. The greater we value the intellect of the person, an associate that intangible quality with the meaty substance of the brain, the grater power the messy physicality of their brain takes on in our imagination. Harvey’s seemingly irrational actions can be seen in this light to be an extreme manifestation of the cult of scientific genius that evolved around Einstein and his accomplishments, and can not be separated from the same impulse that has motivated generations of Catholics to preserve the relics of their own saints.

Not seen in these saintly terms, Harvey died in 2007, and his brain, to the best of my knowledge, was laid to rest with him.

Einstein’s Brain:

For More Information:

http://en.wikipedia.org/wiki/Einstein%27s_brain

http://en.wikipedia.org/wiki/Thomas_Stoltz_Harvey

http://www.stevenlevy.com/index.php/einsteins-brain

http://io9.com/5836056/the-stolen-preserved-and-eventually-cubed-brain-of-albert-einstein

http://www.sfgate.com/news/article/Einstein-s-brain-is-now-interactive-iPad-app-3891236.php

Paterniti, Michael. 2001. Driving Mr. Albert: A Trip Across America With Einstein’s Brain. Dial Press Trade Paperback.

Carolyn Abraham, Possessing Genius: The Bizarre Odyssey of Einstein’s Brain.

(For another scientific relic, see Galileo’s finger: http://www2.jpl.nasa.gov/galileo/finger.html)

http://blogs.scientificamerican.com/talking-back/2012/11/16/einsteins-brain-more-special-than-we-ever-knew/ (New!)